# How to Find the Perimeter of a Quadrilateral

## Formula for perimeter

The distance around any flat (two-dimensional) object is the object's **perimeter**. You can measure perimeter in linear units like meters, yards, centimeters or miles.

To find the perimeter of any quadrilateral, add the lengths of its four sides. Let **P = perimeter **and** s(***n***) = a** measured side. The formula for any quadrilateral is:

What is the perimeter of a rhombus with sides **444 mm** long?

$P=444mm+444mm+444mm+444mm$

$P=\mathrm{1,776}mm$

That's a patriotic rhombus! Now, imagine or draw an irregular quadrilateral with side lengths of **5 yards, 7 yards, 9 yards, 11 yards***.*

What is its perimeter?

$P=5yds+7yds+9yds+11yds$

$P=32yds$

## Example

What is the perimeter of a kite with two sides of **43 cm**, and two sides of** 71 cm?**

$P=43cm+43cm+71cm+71cm$

$P=228cm$

A kite has two pairs of congruent sides. If you labelled one of the short, paired sides as ** a** and the longer, paired side as

**, the formula would be:**

*b*$P=2(a)+2(b)$

OR

$P=2(a+b)$

## Unknown side

What can you do if you do not know the measurement of all four sides of a quadrilateral?

For certain quadrilaterals, if you have three measured sides, you can find the measure of the unknown side. For several types of quadrilaterals, opposite sides are equal. If you know the measure of one side, you know the length of its opposite twin.

So, for these, *P*** = perimeter**, *w*** = width **and** ***l*** = length** (not height):

$P=2(w)+2(l)$

OR

$P=2(w+l)$

The perimeter of these four quadrilaterals can be found using this technique:

Squares

Rhombuses

Rectangles

Parallelograms

If you have an irregular quadrilateral with an unknown side, you must either know the other three sides and the total perimeter, or you must physically measure the unknown side.

If you know the total perimeter and the measure of three sides, add the three known sides and subtract them from the perimeter to find the unknown length:

Architects struggle constantly with irregular polygons. Empty lots may be strange shapes, but the architect still has to create houses on them, such as The Octagon House.

Here is a floor plan for your Math Club's new headquarters, squeezed onto an irregular plot of land next to the Sports Club's pavilion. The sides measure **13'**, **22'**, **24'** and **14'**.

What is its perimeter?

Perimeter of **73 feet**? We sure hope so!